

Salivary mucin MUC5B inhibits HIV-1 subtype C in an in vitro pseudoviral assay

<u>Julia Peacocke</u>, Zoe Lotz, Jeffrey R Dorfman¹, Delawir Kahn, Paul Roux² and Anwar S Mall*

Division of General Surgery and Medicine², UCT, ICGEB¹ and UCT Division of Immunology, Cape Town, South Africa

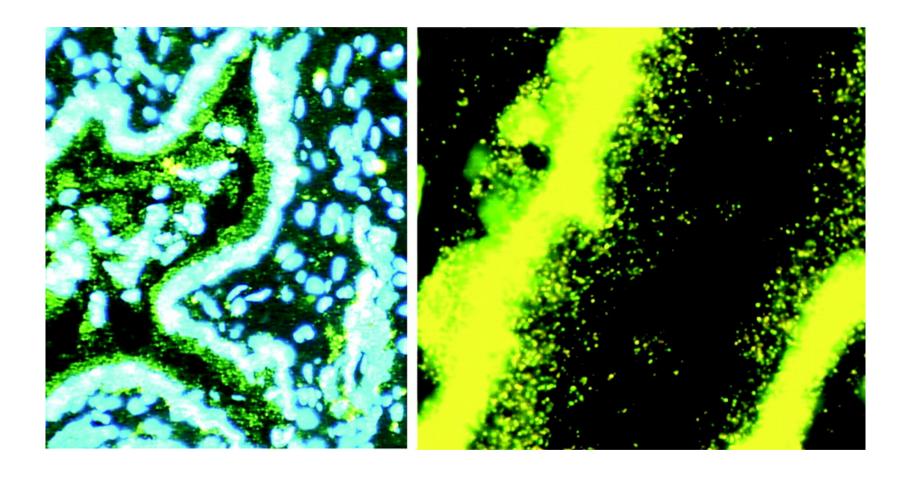
SA HIV Clinicians Society 2012

Mucus and Mucins

Slimy, highly viscous secretion coating the surface of epithelial tissues

Atuma C et al. Am J Physiol Gastrointest Liver Physiol 2001;280:G922-G929

Gastrointestinal and Liver Physiology


Protective mucus barrier

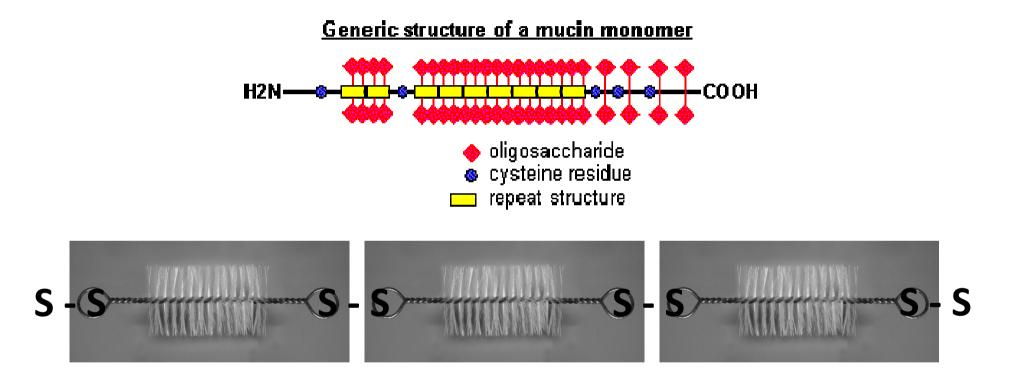
 Highly elastic and adhesive properties – role in aggregating and removing pathogenic micro-organisms from the oral cavity

- Insolubility and unstirred nature of the mucus gel layer on gastric epithelium (Rees and Turnberg, 1982)
- The mucus layer provides spatial separation of the colonic epithelium with intraluminal bacteria
- Protection greatly limits the viral infection (SIV) of cervicovaginal epithelial tissues (Miller et al, 2005)

Residual virions from the inoculum trapped in cervical mucus.

Miller C J et al. J. Virol. 2005; doi:10.1128/JVI.79.14.9217-9227.2005

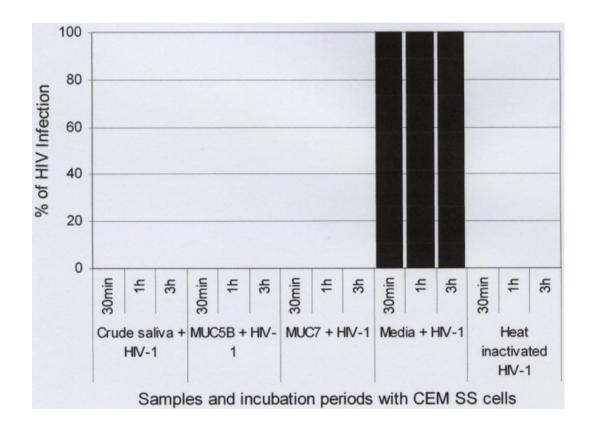
Journal of Virology


AIM

- Investigating this mucus/viral interaction strategy for preventing transmission of HIV-1?
- Mucus-based microbicide?

Mucin composition, structure and conformation

High molecular weight glycoproteins

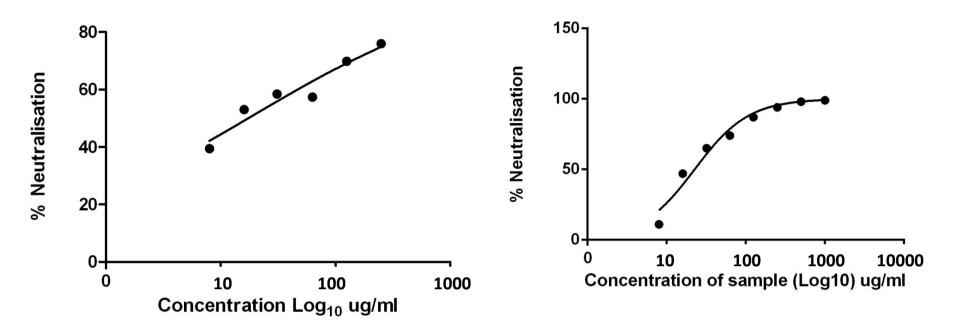


Secreted salivary mucins - MUC5B (gel forming) and MUC7 (not gel forming)

Transmission of HIV-AIDS occurs rarely in oral fluid exchange

<u>Cohen MS</u>, <u>Shugars DC</u>, <u>Fiscus SA</u>. Limits on oral transmission of HIV-1. <u>Lancet.</u> 2000 Jul 22;356(9226):272.

H. Habte et al (2006) in our laboratory:



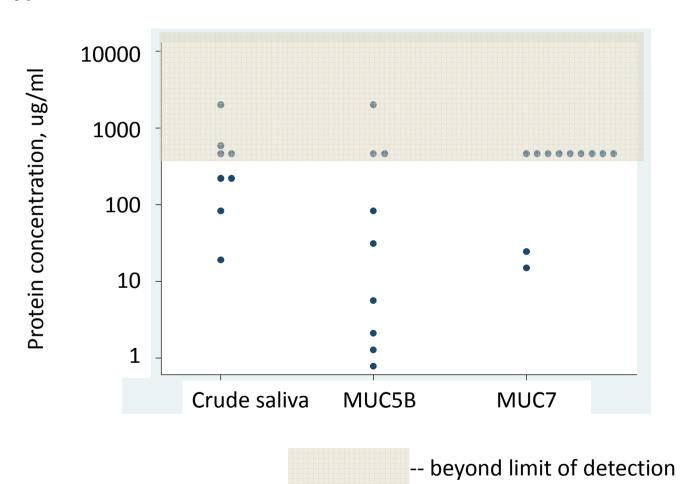
 Mechanism – postulate broad interaction between the extensive glycosylation of the mucin with that of the viral capsid – aggregating and removing virus from the oral cavity – preventing viral interaction with susceptible cells

Further studies by J.Peacocke et al (2012):

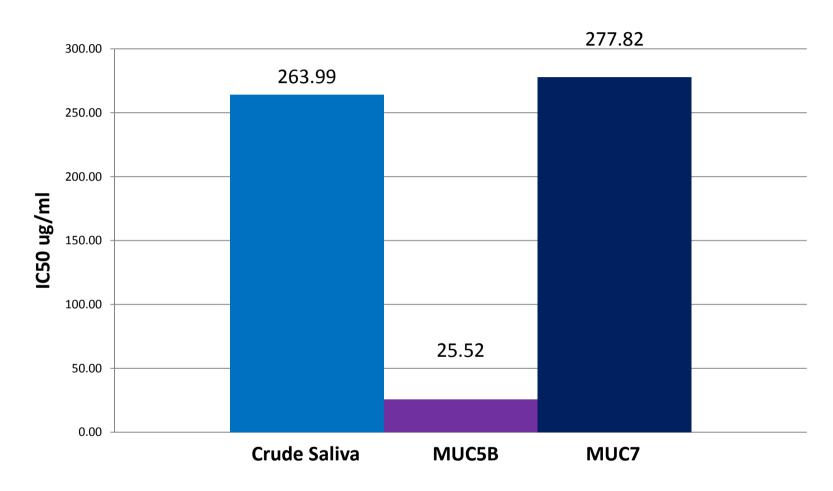
- HIV-negative crude saliva inhibited HIV-1
 - Subtype C strain
 - 70% HIV-negative group
 - 75% HIV-positive group
- HIV-positive crude saliva mucus also inhibited the virus
- Purified HIV-negative and HIV-positive mucins inhibited the virus
 - · Unlike the previous study
- No significant difference in inhibition with HIV-status

Neutralisation of HIV-1 by Crude Saliva

- Crude saliva IC₅₀ 17.34ug/ml protein conc.
- IC_{50} 22.54 ug/ml protein conc.


- Pseudovirus CAP45, subtype C, KZN
- Representative samples

Dose-response nature of inhibition of HIV-1 pseudovirus


 IC_{50} is the concentration of the inhibitor at which 50% of the response is observed – calculated using a curve fit (GraphPad Prism)

Neutralisation of Subtype C HIV-1 Pseudovirus by Crude Saliva and its Purified Mucins

Subtype C viruses DU422.1 and CAP45, KZN

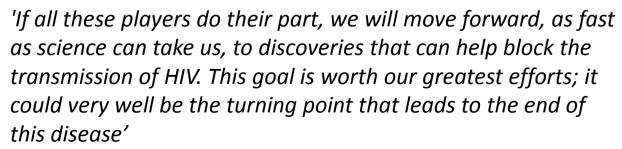
Salivary mucus and mucin samples tested against subtype C pseudovirus

MUC5B appears to have greater neutralising activity of HIV-1 than MUC7 (and crude saliva)

CONCLUSION

- *Salivary MUC5B neutralises* HIV-1 pseudoviruses CAP45 (KZN) and DU422 (Durban) of **subtype C** when purified from HIV-negative and HIV-positive individuals.
- The neutralisation activity of MUC5B IC₅₀ 25.52ug/ml
 appears greater than MUC7 IC₅₀ 277.82ug/ml
- Neutralising activity irrespective of subtype (A, Q168a.2 from Kenya)

THANKS

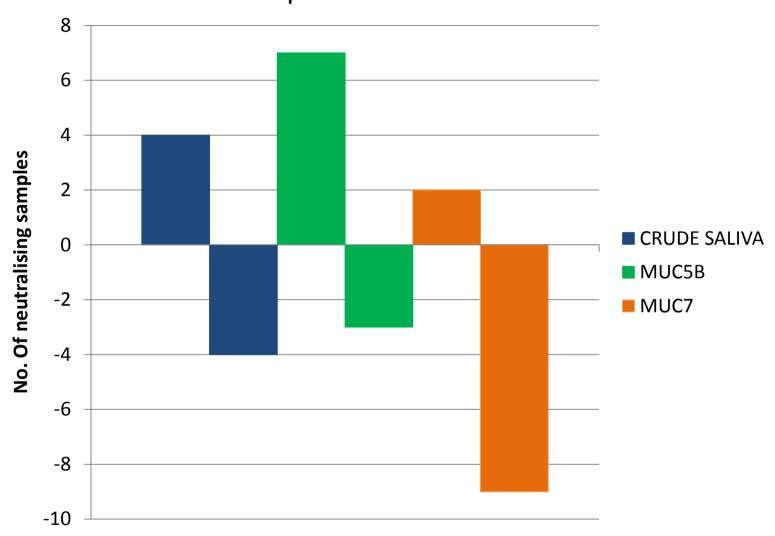

- Head of research, supervisor Prof Mall, HOD Prof Kahn, and our laboratory staff
- Dr Paul Roux from the HIV-clinic, Groote Schuur Hospital, for recruitment of donors

 Collaboration with Dr Jeff Dorfman and PhD student Rajesh Jacob at the ICGEB – International Centre for Genetic Engineering and Biotechnology

Surgery Department, UCT, NRF for funding

EVIDENCE

- MUC7 inhibitory potential against fungal and bacterial infection in the oral cavity? But not HIV-1?
 - Wei GX, Bobek LA. Human salivary mucin MUC7 12-mer-L and 12-mer-D peptides: antifungal activity in saliva, enhancement of activity with protease inhibitor cocktail or EDTA, and cytotoxicity to human cells. <u>Antimicrob Agents</u> <u>Chemother.</u> 2005 Jun;49(6):2336-42.
- MUC5B is a larger and more extensively glycosylated and gel-forming molecule than MUC7 – refined approach to defining the mechanism of inhibition
 - Broad/physical interaction due to charge?
 - Specific binding between mucin and virus?
 - Wu Z, Golub E, Abrams WR, Malamud D. gp340 (SAG) binds to the V3 sequence of gp120 important for chemokine receptor interaction. AIDS Res Hum Retroviruses. 2004 Jun;20(6):600-7.
 - <u>Earl Stoddard</u>, <u>Houping Ni</u>, <u>Georgetta Cannon</u>, <u>Chunhui Zhou</u>, <u>Neville Kallenbach</u>, <u>Daniel Malamud</u>, and <u>Drew Weissman gp340 Promotes Transcytosis of Human Immunodeficiency Virus Type 1 in Genital Tract-Derived Cell Lines and Primary Endocervical Tissue J Virol. 2009 September; 83(17): 8596–8603.
 </u>
- Postulate altered glycosylation
 - Further work using LC-MS to analyse glycosylation between mucins
 - Manipulation within neutralisation assay

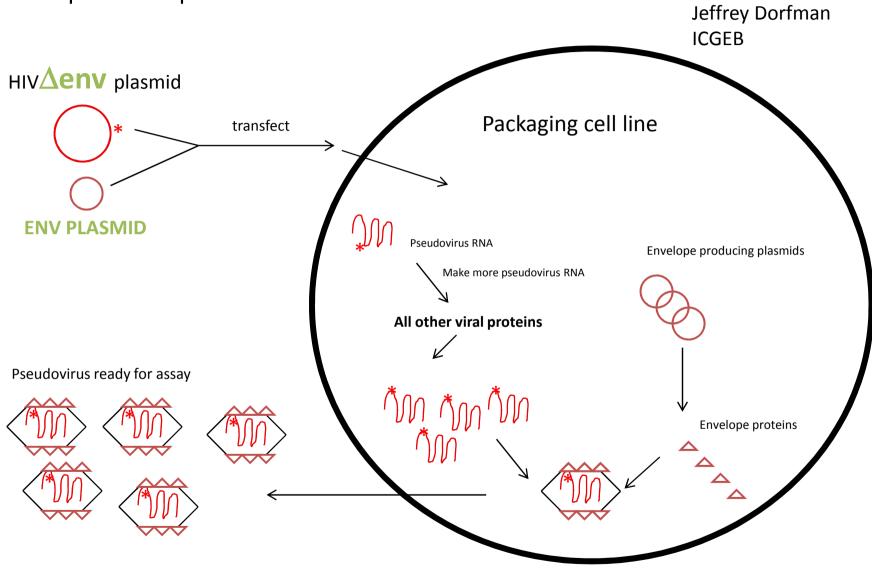

Neutralisation of virus	MUC5B		
CAP45			
Yes	11	100%	
No	0	0%	
Total	11		
DU422			
Yes	10	83%	
No	10	17%	
Total	20		
Q168a.2			
Yes	4	100%	
No	1	0%	
Total	5		

Preliminary data – MUC5B neutralises
Subtype C
pseudoviruses CAP45
and DU422.1 as well
as subtype A virus
Q168a.2

MUC7						
	HIV status of donor					
Neutralisatio n of virus	Ne.	gative	Positive			
CAP45						
Yes	0	0%	4	100%		
No	0	0%	0	0%		
Total	0		4			
DU422						
Yes	1	20%	4	44%		
No	4	80%	5	56%		
Total	5		9			
Q168a.2						
Yes	0	0%	0	0%		
No	2	100%	2	100%		
Total	2		2			

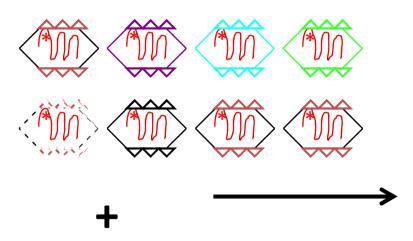
Preliminary data – MUC7 neutralises
Subtype C
pseudovirus DU422.1,
potentially CAP45

Salivary mucus and mucin samples tested against subtype C pseudovirus


Greater number of neutralising samples for MUC5B than both crude saliva and MUC7

HIV-1 pseudovirus neutralisation assay

Genetically modified pseudovirus


- Multiple strain testing
- Any cloned env gene may be used
- Panels of env's will be used
- All virus produced normally invade only once
 - "single cycle pseudo-virus"
 - (low risk of recombination to infectious virus)
 - Much safer
 - BSL2 lab
- Sensitive and technically easy assay readout
 - luminescence.
- Easy to reproduce

Step 1. make pseudovirus:


Step 2. assay:

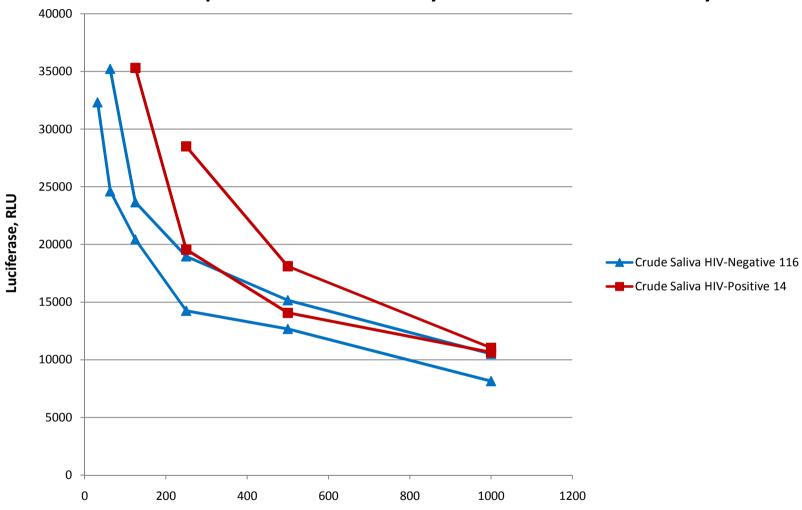
Pseudovirus env mutant panel

Add test sample:

- -- dilution of serum
- -- MUCIN

Jeffrey Dorfman ICGEB

Virus enters target cell


Does not block

•

Luciferase

(expression in target cell line driven by Tat protein) from the virus

Graph of Luciferase activity in HIV-Neutralisation assay

Crude concentration of material in lyophilised/dialyzed saliva, ug/ml

Crude saliva							
	HIV status of donor						
Neutralisation of virus	Negative		Positive				
CAP45							
Yes	1	100%	0	0%			
No	0	0%	0	0%			
Total	1		0				
DU422							
Yes	7	100%	2	67%			
No	0	0%	1	33%			
Total	7		3				
Q168a.2							
Yes	2	67%	0	0%			
No	1	33%	2	100%			
Total	3		2				